Curriculum Framework and Syllabus for

Master of Science (M.Sc) in Data Science

For the students admitted from the academic year 2019-2020

(BASED ON CHOICE BASED CREDIT SYSTEM (CBCS))

2019-2020

Board of Studies (Post Graduate) Meeting was held on 22.09.2018 and Approved by Academic Council on 10.04.2019

POST GRADUATE DEPARTMENT OF DATA SCIENCE

NEHRU MEMORIAL COLLEGE

[Nationally Accredited with 'A' Grade by NAAC] An Autonomous College affiliated to Bharathidasan University Puthanampatti—621 007

[Nationally Accredited with 'A' Grade by NAAC] An Autonomous College affiliated to Bharathidasan University Puthanampatti—621 007

POST GRADUATE DEPARTMENT OF DATA SCIENCE

In the Golden Jubilee (1967-2017) celebration of our college, we are the first institution to introduce Data Science programs under Bharathidasan University affiliated colleges in the academic year 2017-2018.

Data Science is the study of generalizable extraction of knowledge from data. Being a data scientist requires an integrated skill set spanning mathematics, statistics, machine learning, databases and other branches of computer science along with a good understanding of the craft of problem formulation to engineer effective solutions. This course will introduce students to this rapidly growing field and equip them with some of its basic principles and tools. Students will learn concepts, techniques and tools they need to deal with various facets of data science practice, including data collection and integration, exploratory data analysis, predictive modelling, descriptive modelling. The focus in the treatment of these topics will be on breadth, rather than depth, and emphasis will be placed on integration and synthesis of concepts and their application to solving problems. To make the learning contextual, real datasets from a variety of disciplines will be used.

Vision

Towards enlighten enhance ensure knowledge conforming to international standards.

Mission

To be seamless platform for engagement between industry and public research in big data analytics.

To nurture data science innovative solutions to address real-world challenges.

[Nationally Accredited with 'A' Grade by NAAC]
An Autonomous College affiliated to Bharathidasan University
Puthanampatti—621 007

POST GRADUATE DEPARTMENT OF DATA SCIENCE

PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

PEO1: Prepare graduates to become data professionals with comprehensive knowledge

PEO2: Prepare graduates to become continuous learner with societal focus

PEO3: Prepare graduates to become data scientist/data analyst/ Entrepreneurs in the Data Science industry

PEO4: To inspire the students to involve in data science competitions

PROGRAMME OUTCOME (PO)

PO1: Become knowledgeable in the subject of DATA SCIENCE and apply the principles of the same to the needs of the Employer/Institution/Enterprise/Society

PO2: Gain Analytical skills in the in the field/area of DATA SCIENCE

PO3: Understand and appreciate professional's ethics, community living and nation Building initiatives

PO4: To classify the relevant problems and understand the methods in data science

PO5: To apply the acquired knowledge to devise solutions to solve the real world problems

PO6: To distil complex data into actionable insights and analyse the methodology

PROGRAMME SPECIFIC OUTCOME (PSO)

PSO1: Apply Knowledge of data science in the domain of mathematics and computer science.

PSO2: solve the complex problems in the field of data science with an understanding of the societal, legal, and cultural impacts of the solution

PSO3: To provide a comprehensive understanding of machine learning techniques

PSO4: To introduce data analytics for various domain of interest

PSO5: To experience in implementation of methods involved in Data Science

Curriculum for M.Sc. Data Science -Batch 2019 onwards

PROGRAM STRUCTURE

Program Duration : 2 Years Medium of Instruction : English

• Credit System : Total number of credits: 90

• Mandatory attendance to appear for examination: Attendance: 75%

Overview of the Curriculum									
Semester	Core course	Elective course	Practical	Project	Total				
Semester 1	4		1		24				
Semester 2	2	2 (CEC-1, OECC-1)	1		22				
Semester 3	2	2	1		22				
Semester 4	2	1	1	1	22				

Total:90

CRED	CREDIT DISTRIBUTION							
S.NO	CATEGORY OF COURSES	CREDITS	% OF CREDITS TO TOTAL CREDITS					
1	Core Courses (10)	50	55.6					
2	Core Practicals (4)	16	17.8					
3	Elective Course (5) – [CEC-4 + OEC-1]	20	22.2					
4	Project (1)	04	04.4					
	Total	90	100					

PROGRAM CORE, ELECTIVE, OPEN ELECTIVE AND PRATICAL COURSES

SEMESTER	NUMBER OF CORE COURSES	CREDITS	NUMBER OF ELECTIVE COURSES (CEC-4,OEC-1)	CREDITS	NUMBEROF PRACTICALS /PROJECTS	CREDITS
1	4	20			1	4
2	2	10	2 (CEC-1,OEC-1)	8	1	4
3	2	10	2	8	1	4
4	2	10	1	4	2	8
	Total credits for core courses (10)	50	Total credits for elective courses (5)	20	Total credits for practical and projects (4+1)	20

Curriculum for M.Sc. Data Science – Batch 2019 onwards

Average Percentage of the Courses having Focus on Skills, Employability and Knowledge

Courses	Employability	Skill	Knowledge based	
CC-I			Y	
CC-II			Y	
CC-III			Y	
CC-IV		Y		
CC-V	Y			
CC-VI		Y		
CC-VII			Y	
CC-VIII	Y			
CC-IX			Y	
CC-X		Y		
CC-XI	Y			
CC-XII			Y	
CC-XIII		Y		
CC-XIV	Y			
CC-XV	Y			
CEC-I	Y			
OEC-I			Y	
CEC-II		Y		
CEC-III			Y	
CEC-IV	Y			
Total	7	5	8	
Percentage	36.84	26.32	36.84	1

Curriculum for M.Sc. Data Science – Batch 2019 onwards

Revised syllabus -2019(percentage of modification of syllabus from 2017 syllabus)

Core Courses

Mathematics for Data Science

Advanced Data Base Systems

Data Mining Techniques

Information Security

Database Systems & Data mining lab

Probability and Statistical Computing

Artificial Intelligence and Machine Learning

Machine Learning Lab (Python/R)

Multivariate Techniques

Big Data Analytics

Big Data Analytics -Lab

Deep Learning

Predictive Analytics

Predictive Analytics -Lab

Core Elective Courses

Python Programming

R Programming

Natural Language Processing

Financial Risk Analytics

Cloud and Web Intelligence

Customer Relationship Management

Business Intelligence

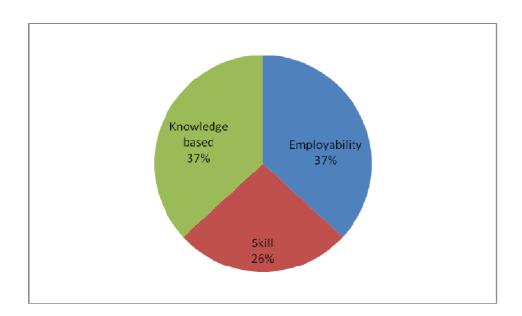
Image and Video Analytics

Open Elective Courses

Social Media Mining

Health Care Data Analytics

Project


Project /Internship

The following new courses are introduced in the revised syllabus

Business Intelligence
Natural Language Processing
Social Media Mining
Customer Relationship Management
Financial Risk Analytics
Health Care Data Analytics
Deep Learning
Image and Video Analytics

Revised Syllabus-2019

Employability	36.84
Skill	26.32
Knowledge based	36.84

Curriculum for M.Sc. Data Science – Batch 2019 onwards

Objectives of the Programme:

- 1. Prepare graduates to become data professionals with comprehensive knowledge
- 2. Prepare graduates to become continuous learner with societal focus
- 3. Prepare graduates to become data scientist/data analyst/ Entrepreneurs in the Data Science industry

The board of studies for Post Graduate Data Science Department includes the following members:

Chairman:

Mrs. S. MALA, M.C.A., M.B.A., M.Phil. (Ph.D)

Assistant Professor Department of Data Science Nehru Memorial College Puthanampatti

University Representative

Dr. P. MURUGANANTHAM, M.SC., B.ED., PGDCA. M.Phil., Ph.D.,

Associate Professor Department of Mathematics

Jamal Mohamed College (Autonomous)

Tiruchirappalli – 620 020

Subject Experts:

Dr. U.SRINIVASULU REDDY MCA., M.Phil., Ph.D.,

Assistant Professor, Department of Computer Applications

National Institute of Technology, Tiruchirappalli – 620 015.

Dr. P. KALAVATHI, M.C.A., M.Phil., Ph.D.,

Professor & Head, Department of Computer Science & Applications

The Gandhigram Rural Institute, Gandhigram 624 302

Alumni Representative

Mr. MADHU PRASAD RAMALINGAM

Associate Tech Lead, Encoretheme Technologies, Chennai

Board Members:

DR.A.R.PONPERIASAMY M.Sc(Phy)., M.Sc(CS).,PGDCA.,M.C.A., M.Phil.,Ph.D.,

Principal and Professor of Computer Science, Nehru Memorial College

Mrs. S. MALA, M.C.A., MBA, M.Phil. (Ph.D)

Assistant Professor in Data Science, Nehru Memorial College

Ms. P. KALPANA, M.Sc., M.Phil. M.B.A., SET. (Ph.D)

Assistant Professor in Computer Science, Nehru Memorial College

Dr. K. SRIDEVI, M.Sc., M.Phil. SET. NET., Ph.D

Assistant Professor in Computer Science, Nehru Memorial College

Mr. T. YOGESWARAN, M.Sc., M.Phil.

Assistant Professor in Mathematics, Nehru Memorial College

M.Sc. Data Science – Course Structure under CBCS - Batch 2019 onwards

				Ins.				Marl	KS.
Sem	Course	Course	Subjects	Hrs/	Crs	Exam			
		Code		Week		Hrs	Int	Ext	Total
	CC-I	19PDS101	Mathematics for Data Science	6	5	3	25	75	100
	CC-II	19PDS102	Advanced Data Base Systems	6	5	3	25	75	100
	CC-III	19PDS103	Data Mining Techniques	6	5	3	25	75	100
I	CC-IV		Information Security	6	5	3	25	75	100
	CC-V		Data Base Systems & Data Mining Lab	6	4	3		60	100
		TOTAL		30	24				500
	CC-VI	19PDS206	Probability and Statistical Computing	6	5	3	25	75	100
	CC-VII	19PDS207	Artificial Intelligence and Machine Learning	6	5	3	25	75	100
П	CC-VIII	19PDS208L	Machine Learning Lab (Python/R)	6	4	3	40	60	100
11	CEC-I	19PDS215a	Python Programming	6	4	3	25	75	100
	6261		R Programming					7.0	100
	OEC-I		Health Care Data Analytics	6	4	3	25	75	100
			Social Media Mining						
		TOTAL		30	22		T		500
	CC-IX	19PDS309	Multivariate Techniques	6	5	3	25	75	100
	CC-X	19PDS310	Big Data Analytics	6	5	3	25	75	100
III	CC-XI	19PDS311	Big Data Analytics –Lab	6	4	3	40	60	100
	CEC-II	19PDS317a	Natural Language Processing						
	CEC II	19PDS317b	Financial Risk Analytics	6	4	3	25	75	100
	CEC-III		Cloud and Web Intelligence						
	CLC-III		Customer Relationship Management	6	4	3	25	75	100
		TOTAL	1 0	30	22				500
	CC-XII		Deep Learning	6	5	3	25	75	100
	CC-XIII		Predictive Analytics	6	5	3	25	75	100
IV	CC-XIV	19PDS414	Predictive Analytics –Lab	6	4	3	40	60	100
	CEC-IV		Business Intelligence			-			
		19PDS419b	Image and Video Analytics	6	4	3	25	75	100
	Project		Internship/Project Work	6	4	-	25	75	100
<u></u>		1	TOTAL	30	22				500
				120	90				2000

Note: Course : CC - Core Course CEC - Core Elective Course OEC - Open Elective Course , Course Code: 19: Year, PDS: Post graduate Data Science, 101: Subject numerical code of subjects, L refers Lab.

	Core course		Electives		Practicals	Total credits
I	CC-I (5) Mathematics for data science	CC-II (5) Advanced data base systems	CC-III (5) Data Mining Techniques	CC-IV (5) Information Security	CC-V (4) Database (SQL) & Mining lab	_24
II	CC-VI (5) Probability and Statistical Computing	CC-VII (5) Artificial Intelligence & Machine Learning	CEC - I (4) Python programming R programming	OEC-I (4) Health Care Data Analytics Social Media Mining	CC-VIII (4) Machine Learning (Python/R lab)	22
III	CC-IX (5) Multivariate Techniques	CC-X (5) Big Data Analytics	CEC-II (4) Natural Language Processing Financial Risk Analytics	CEC-III (4) Cloud and Web Intelligence CRM	CC-XI (4) Big Data Analytics lab (Hadoop, Mongo DB)	22
IV	CC-XII (5) Deep Learning	CC-XIII (5) Predictive analytics	CEC-IV (4) Business Intelligence Image & Video Analytics	CC-XV (4) Project / Internship	CC-XIV (4) Predictive Analytics lab (Rapid Miner)	22

M.Sc. Data Science – Course Structure under CBCS - Batch 2019 onwards

Sem	Course	Course code	Subjects	L	T	P	C
	CC-I	19PDS101	Mathematics for Data Science	6	6	0	5
I	CC-II	19PDS102	Advanced Data Base Systems	6	6	0	5
1	CC-III	19PDS103	Data Mining Techniques	6	6	0	5
	CC-IV	19PDS104	Information Security	6	6	0	5
	CC-V	19PDS105L	Data Base Systems & Data Mining Lab	6	0	6	4
II	CC-VI	19PDS206	Probability and Statistical Computing	6	6	0	5
	CC-VII	19PDS207	Artificial Intelligence and Machine Learning	6	6	0	5
	CC-VIII	19PDS208L	Machine Learning Lab (Python/R)	6	0	6	4
	CEC-I	19PDS215a	Python Programming	6	6	0	4
		19PDS215b	R Programming		6	0	
	OEC-I	19PDS216a	Health Care Data Analytics	6	6	0	4
		19PDS216b	Social Media Mining		6	0	
III	CC-IX	19PDS309	Multivariate Techniques	6	6	0	5
	CC-X	19PDS310	Big Data Analytics	6	6	0	5
	CC-XI	19PDS311L	Big Data Analytics –Lab	6	0	6	4
	CEC-II	19PDS317a	Natural Language Processing		6	0	
		19PDS317b	Financial Risk Analytics	6	6	0	4
	CEC-III	19PDS318a	Cloud and Web Intelligence		6	0	
		19PDS318b	Customer Relationship Management	6	6	0	4
IV	CC-XII	19PDS412	Deep Learning	6	6	0	5
	CC-XIII	19PDS413	Predictive Analytics	6	6	0	5
	CC-XIV	19PDS414L	Predictive Analytics –Lab	6	0	6	4
	CEC-IV	19PDS419a	Business Intelligence		6	0	
		19PDS419b	Image and Video Analytics	6	6	0	4
	PROJECT	19PDS420L	Internship/Project Work	6	0	6	4
			GRAND TOTAL	120			90

L: LECTURE|T:THEROY|P:PRACTICAL|C: CREDITS

M.Sc. Data Science – Course Structure under CBCS - Batch 2019 onwards

LIST OF ELECTIVES COURSES

Sem	Course	Course Code	Subjects
II	CEC-I	19PDS115a	Python Programming
II	CEC-I	19PDS115a	R Programming
II	OEC-I	19PDS216a	Health Care Data Analytics
II	OEC-I	19PDS216b	Social Media Mining
III	CEC-II	19PDS217a	Natural Language Processing
III	CEC-II	19PDS217b	Financial Risk Analytics
III	CEC-III	19PDS318a	Cloud and Web Intelligence
III	CEC-III	19PDS318b	Customer Relationship Management
IV	CEC-V	19PDS419a	Business Intelligence
IV	CEC-V	19PDS419b	Image and Video Analytics

M.Sc. Data Science - Course Structure under CBCS - Batch 2019 onwards

INTERNAL AND EXTERNAL ASSESSMENT

Theory

Internal: 25marks

Distribution	Marks
Seminar	5
Assignment	5
CIA Test I	7.5
CIA Test II	7.5
Total	25

External: 75 marks

Question Paper Pattern for Internal and External Assessment:

Section A: 20 Questions x 2 Mark = 20 Marks

(Two Questions from each unit)

Section B: 5 Questions x 5 Marks = 25 Marks (Internal Choice and one question from each unit)
Section C: 3 Questions x 10 Marks = 30 Marks

(Answer any three out of 5 questions and one question from each unit)

Practical

Internal: 40 marks

Marks Distribution: Test1 = 15 Marks

Test2 =15 Marks Observation =10 Marks Total = 40 Marks

External: 60 marks

Marks Distribution: Practical = 50 Marks

Record = 10 Marks
Total = 60 Marks

Project: 100 marks

Marks Distribution: Internal (2 reviews) : 25 Marks

Report Evaluation : **5**0 Marks
Viva Voce : 25 Marks

Total : 100 Marks (25+75)

M.Sc. Data Science – Course Structure under CBCS - Batch 2019 onwards

Knowledge Level

K1-Acquire/Remember; **k2**-Understanding; **k3**-Apply; **k4**-Evaluate; **k5**-Analyze

1. Part-I, II and III

Theory (External + Internal=75+25=100 marks)

External/Intern	nal							
Knowledge	Section	Section		Section Marks Hrs		Total		
Level								
K1-k4	A(Answer all)	10x2=	20				
K3-k5	B(Either or P	Pattern)	5 x5 =	25 3	75			
K1,k3-k5	C(Answer 3 o	out of 5)	3x10=	30				
Internal	L							
Components	Maximum	Conve	rsion	Hrs	Total			
_	Marks							
CA1	75	7.5		3				
CA2	75	7.5	7.5	7.5		3	3	25
Seminar	20	5	-					
Assignment	20	5						
				Total	100			

Class	Course	Course code	Mathematics for Data	Sem	Hrs / week	Credits
M.Sc (Data Science)	CC-I	19PDS101	Mathematics for Data Science		6	5

Cognitive Level	K – 2 Understand K – 3 Apply K4 -4 Analyze
	This Course aims
	 To understand basic mathematical concepts of data science.
	 To know the applications of graphs in other disciplines.
Course Objectives	 To learn the logics of mathematics needed for data science operations.
	To study Context free grammars.
	To impart knowledge in operations of matrix algebra needed for
	computing.

UNIT	Content	No. of Hours
I	Matrix Algebra: Matrices, Rank of Matrix, Solving System of Equations-Eigen	12
	Values and Eigen Vectors, Inverse of a Matrix - Cayley Hamilton Theorem.	
II	Basic Set Theory: Basic Definitions - Venn Diagrams and set operations, Laws of	12
	set theory - Principle of inclusion and exclusion – partitions, Permutation and	
	Combination Relations- Properties of relations - Matrices of relations, Closure	
	operations on relations Functions - injective, subjective and objective functions.	
III	Mathematical Logic: Propositions and logical operators, Truth table -	15
	Propositions generated by a set, Equivalence and implication, Basic laws- Some	
	more connectives Functionally complete set of connectives- Normal forms -	
	Proofs in Propositional calculus Predicate calculus.	
IV	Formal Languages: Languages and Grammars-Phrase Structure Grammar,	11
	classification of Grammars-Pumping Lemma For Regular Languages, Context Free	
	Languages.	
V	Finite State Automata: Finite State Automata-Deterministic Finite State	10
	Automata(DFA), Non Deterministic Finite State Automata (NFA) Equivalence of	
	DFA and NFA-Equivalence of NFA and Regular Languages	

Reference	 Text Books: 1. Kenneth H.Rosen, "Discrete Mathematics and Its Applications", Tata McGraw Hill, Fourth Edition, 2002. 2. Hopcroft and Ullman, "Introduction to Automata Theory, Languages and Computation", Narosa Publishing
Course Outcomes	 On completion of the course, students should be able to do CO 1: Understand different mathematical concepts of data science with applications. CO 2: After the course the students will have a strong background of basic mathematics which has diverse applications in many area of data science, data analytics, etc., CO 3: Master regular languages and finite automata. CO 4: Master context free languages and calculus needed for language processing. CO 5: Familiar with thinking analytically and intuitively for problem analysis in related areas of theory in data science.

CO/PO			F	PO			PSO				
	1	2	3	4	5	6	1	2	3	4	5
CO1	2	1	1	3	2	1	1	2	2	3	0
CO2	1	3	2	2	1	3	1	2	0	1	2
CO3	3	2	3	1	3	2	3	3	3	0	3
CO4	2	1	2	3	2	1	2	0	1	2	1
CO5	1	2	1	0	2	3	1	1	2	1	2

Class	Course	Course		Sem	Hrs /	Credits
		code	Advanced Data Base		week	
M.Sc	CC-II	19PDS102	~	I	6	5
(Data Science)		171 1/3102	Systems		U	

	K – 1 Remember						
Cognitive Level	K – 2 Understand						
	K – 3 Apply						
	This Course aims						
	 To understand various data model. 						
	To understand the SQL structure, set operations, aggregate						
Course Objectives	functions.						
	 To develop and refers the conceptual data models, entities, 						
	attributes.						
	 To apply normalization techniques. 						
	 To learn database system architecture. 						

UNIT	Content	No. of Hours
I	Introduction: Data base system verses file system – View of data-	15
	Data Models – Database Languages – Database users and	
	Administrators Database system structure. Entity: Basic concepts –	
	Constraints – Keys – Design Issues – ER Diagram – Weak entity	
	Relationship Model: Sets – Design of an ER Database schema –	
	Reduction of an ER schema to tables.Relational Model: Structure –	
	Relational Algebra – Extended Relational Algebra – Algebraic operations	
	– Modification.	
II	SQL: Structure of SQL -Set operations – Aggregate functions – Null	15
	values Nested sub queries – Views Complex queries – Joined Relations.	
	Embedded SQL - Dynamic SQL - QBE. Domain Constraints - Referential	
	Integrity – Triggers.	
III	Database Design: Relational - First normal form - Functional	8
	dependencies.Decomposition – Boyce-codd normal form.Third Normal	
	Form – Fourth normal form More normal form.	
IV	Transaction concepts: Transaction state – concurrent execution –	11
	recoverability. Concurrent control: Lock based protocols – timestamp	
	based protocols Validation based protocols – Deadlock Handling.	

V	Database system architecture: Centralized and client server						
	architecture – server system architecture – parallel systems –						
	Distributed systems - Network types. Distributed database: Distributed						
	data storage - distributed transactions – commit protocols – distributed						
	query processing.						
Reference	Text Books:						
	1. Henry F.Korth and Abraham Silberschatz, "Database System concepts", 4t Edition, McGraw Hill publication, 2002.						
	2. Bepin C.Desai, "An Introduction to Data base system", Galogotia publication						
	Private limited. Ivan Bayross, "SQL and PL/SQL", BPB Publications, New						
	Delhi.						
	Reference Books:						
	C.J.Date, "An Introduction to Database system",7 th edition, Addison Wesley						
	publication, year 2000.						
Course	On completion of the course, students should be able to do						
Outcomes	CO 1: Understand the fundamentals of database system.						
	CO 2: Design and create tables in database and execute queries.						
	CO 3: Design a database based on a data models using normalization.						
	CO 4: Have knowledge about transaction concept.						

CO/PO				PO					PSO		
	1	2	3	4	5	6	1	2	3	4	5
CO1	2	2	1	3	2	2	2	1	2	3	3
CO2	2	2	1	3	3	1	2	2	3	2	3
CO3	3	1	2	2	2	3	1	2	2	2	3
CO4	2	2	2	3	1	2	2	3	2	1	3

Strongly Correlating(S) - 3 marks
Moderately Correlating (M) - 2 marks
Weakly Correlating (W) - 1 mark
No Correlation (N) - 0 mark

Class	Course	Course		Sem	Hrs /	Credits
		code	Data Mining Techniques		week	
M.Sc (Data Science)	CC-III	19PDS103	Data Winning Teeninques	I	6	5

	K – 1 Remember						
Cognitive Level	K – 2 Understand						
	K – 3 Apply						
	This Course aims						
	 To introduce the basic concepts of data mining and preprocessing techniques 						
Course Objectives	To imbibe the knowledge on Association Rule Mining						
Course Objectives	 To elaborate the importance of classification and prediction techniques through various methods 						
	 To introduce the concepts and importance of basic clustering techniques 						
	 To introduce the concepts of warehousing, architecture and multidimensional data model 						

UNIT	Content	No. of Hours
I	Data Mining & Data Preprocessing: Introduction to KDD process – Knowledge	8
	Discovery from Databases. Data Preprocessing: An Overview – Data Cleaning	
	– Data Integration. Data Reduction–Data Transformation and Data	
	Discretization.	
II	Association Rule Mining: Mining Frequent Patterns: Basic concepts - Frequent	15
	Item set. Mining Method- Apriori Algorithm. Finding Frequent Item sets using	
	Candidate Generation- Generating Association Rules from Frequent Item sets.	
	A Pattern-Growth Approach for Mining Frequent Item set.	
III	Classification: Basic Concepts - Decision Tree Induction. Bayes Classification	15
	Methods- Rule-based Classification. Model Evaluation and Selection-	
	Techniques to Improve Classification Accuracy.	
IV	Clustering: Partitioning Methods: k-means and k-methods. Hierarchical	12
	methods: Agglomerative and Divisive Hierarchical Clustering – BIRCH. Density-	
	Based Methods: DBSCAN – Grid-Based Methods: STING - Evaluation of	
	Clustering.	
V	Data Warehouse: Data Warehousing - Operational Database Systems vs. Data	10
	Warehouses - Data Warehouse Multitier Architecture. Data Warehouse	
	Models: Enterprise Warehouse, Data Mart and Virtual Warehouse.	
	Multidimensional Data Model: Data Cube, Stars, Snowflakes, and Fact	
	Constellations – Online Analytical Processing: Introduction - OLAP Operations.	

Reference	Text Books:								
	Jiawei Han and Micheline Kamber, "Data Mining Concepts and Techniques",								
	Third Edition, Elsevier, Reprinted 2008.								
	Reference Books:								
	1. K.P. Soman, Shyam Diwakar and V. Ajay, "Insight into Data mining Theory and								
	Practice", Easter Economy Edition, Prentice Hall of India, 2006.								
	2. G. K. Gupta, "Introduction to Data Mining with Case Studies", Easter Economy edition, Prentice Hall of India, 2006.								
Course	On completion of the course, students should be able to do								
Outcomes	CO 1: Preprocess the data using various preprocessing techniques								
	CO 2: Generate association rules using Apriori and FP-growth algorithms								
	CO 3: Predict the class label of a given tuple using the classification techniques								
	CO 4: Group the data using the basic clustering techniques								
	CO5: Summarize the concepts of warehouse, its architecture and multidimensional								
	data models.								

CO/PO	PO					PSO					
	1	2	3	4	5	6	1	2	3	4	5
CO1	2	2	1	3	2	3	2	1	1	2	2
CO2	2	1	3	2	1	2	3	2	3	0	1
соз	3	2	2	1	3	1	1	3	2	1	0
CO4	1	3	1	3	2	3	2	1	3	2	3
CO5	2	1	3	2	1	2	3	2	1	3	2

Class	Course	Course		Sem	Hrs /	Credits
		code	Information Security		week	
M.Sc (Data Science)	CC-IV	19PDS104	information security	Ι	6	5

Cognitive Level	K – 1 Remember K – 2 Understand K – 3 Apply
Course Objectives	 This Course aims To understand the basics of Information Security To know the legal, ethical and professional issues in Information Security To know the aspects of risk management To become aware of various standards in this area To know the technological aspects of Information Security

UNIT	Content	No. of Hours
I	Introduction: History-What is Information Security- Critical Characteristics	12
	of Information-NSTISSC Security Model-Components of an Information	
	System-Securing the Components-Balancing Security and Access-The	
	SDLC-The Security SDLC.	
II	Security Investigation: Need for Security, Business Needs,	15
	Threats, Attacks, Legal, Ethical and Professional Issues – An	
	Overview of Computer Security – Access Control Matrix, Policy-	
	Security policies, Confidentiality policies, Integrity policies and	
	Hybrid policies.	
III	Security Analysis: Risk Management: Identifying and Assessing	15
	Risk- Assessing and Controlling Risk – Systems: Access Control	
	Mechanisms- Information Flow and Confinement Problem	
IV	Logical Design: Blueprint for Security- Information Security Policy-	10
	Standards and Practices-ISO 17799/BS 7799, NIST Models -VISA	
	International Security Model-Design of Security Architecture-Planning for	
	Continuity.	
V	Physical Design: Security Technology-IDS-Scanning and Analysis Tools-	8
	Cryptography-Access Control Devices-Physical Security-Security and	
	Personnel.	
Reference	Text Books: 1. Michael E Whitman and Herbert J Mattord, —Principles of Inf	ormation

	Security, Vikas Publishing House, New Delhi, 2003
	Reference Books:
	1. Micki Krause, Harold F. Tipton, — Handbook of Information Security
	Management, Vol 1-3 CRCPress LLC, 2004.
	2. Stuart McClure, Joel Scrambray, George Kurtz, —Hacking Exposed, Tata
	McGraw- Hill, 2003
	3. Matt Bishop, — Computer Security Art and Science, Pearson/PHI, 2002
Course	On completion of the course, students should be able to do
Outcomes	CO 1: Discuss the basics of information security
	CO 2: Illustrate the legal, ethical and professional issues in information security
	CO 3: Demonstrate the aspects of risk management.
	CO 4: Become aware of various standards in the Information Security System
	CO 5: Design and implementation of Security Techniques.

CO/PO	PO							PSO				
	1	2	3	4	5	6	1	2	3	4	5	
CO1	3	2	2	1	1	2	2	1	3	0	2	
CO2	2	2	1	2	3	2	1	2	0	1	3	
CO3	1	3	3	3	2	3	3	3	2	3	0	
CO4	1	1	2	1	1	3	1	1	3	0	2	
CO5	2	2	1	2	3	2	2	2	2	3	0	

	Hrs /	Sem		Course	Course	Class
	week		Data Base Systems &	code		
4	6	Ι	,	19PDS105L	CC-V	M.Sc
	6	Ι	Data Mining Lab	19PDS105L	CC-V	M.Sc (Data Science)

Cognitive Level	K - 1 Remember K - 2 Understand K - 3 Apply
	This Course aims
	 To understand and apply various data base languages in different domains.
Course Objectives	 To implement the constraints in various data bases.
	 To learn and analyze various data mining techniques.
	To be acquainted with the tools and techniques used for Knowledge
	Discovery in Databases.

Experiment	Content	No. of Hours
	1. To implement Data Definition language	12
	1.1. Create, alter, drop, truncate	
	1.2. To implement Constraints.	
	(a). Primary key, (b). Foreign Key, (c). Check, (d). Unique, (e). Null, (f).	
	Not null, (g) . Default,(h). Enable Constraints, (i). Disable Constraints	
	(j). Drop Constraints	
	2. To implement DML, TCL and DRL	12
	(a).Insert, (b).Select, (c).Update, (d).Delete, (e).commit,	
	(f).rollback,(g).save point, (i). Like'%', (j).Relational Operator	
	3. To implement Nested Queries & Join Queries	10
	3.1. (a). To implementation of Nested Queries	
	3. 2. (b). (a) Inner join, (b).Left join, (c).Right join (d).Full join	
	4. To implement Views	6
	4.1. (a). View, (b).joint view, (c).force view, (d). View with check	
	option	
	Application of Classifications	20
	Application of Clustering Techniques	
	On completion of the course, students should be able to do	
Course	CO 1: Understand the fundamentals of database system.	
Outcomes	CO 2: Design and manipulate tables in database and execute queries.	
	CO 3: Design a database based on a data models using normalization.	
	CO 4: Have knowledge about transaction concepts.	
	CO 5: Impart basic knowledge in advance database systems	

CO/PO	PO							PSO			
	1	2	3	4	5	6	1	2	3	4	5
CO1	2	2	1	1	3	1	2	3	0	3	2
CO2	3	1	2	2	1	1	1	1	2	1	1
CO3	2	3	1	3	2	3	1	2	3	2	3
CO4	1	2	3	1	2	2	3	2	2	0	3
CO5	3	2	3	1	3	1	2	3	1	1	2

Class	Course	Course		Sem	Hrs/	Credits
		code	Probability and Statistical		week	
M.Sc	CC-VI	19PDS206	•	II	6	5
(Data Science)		191 05200	Computing		U	

Cognitive Level	K – 1 Remember K – 2 Understand K – 3 Apply K4 -4 Analyze
Course Objectives	 This Course aims To introduce the fundamental concepts in elementary probability theory. To introduce and study properties of standard uni-variate probability distributions. To introduce the basic concepts of statistical inference and assessing significance. To introduce practical data analysis techniques using the statistical computing package R. To enable students to write a small report summarising and interpreting an appropriate data set.

UNIT	Content	No. of Hours
I	Measures of Central Tendency & Measures of Dispersion: Frequency	10
	Distribution -Histogram - Stem and leaf diagram - Frequency Polygon. Mean -	
	Median - Mode - Range Quartile Deviation - Mean Deviation - Box hisker plot -	
	Standard Deviation - Coefficient of Variation	
II	Skewness - Correlation & Regression: Karl Pearson's coefficient of Skewness -	15
	Bowley's coefficient of Skewness - Scatter Diagram. Karl Pearson's coefficient	
	of correlation Spearman's rank correlation coefficient - Linear Regression and	
	Estimation - Coefficients of regression	
III	Theory of Attributes & Hypothesis: Classes and Class Frequencies -	15
	Consistency of Data Independence of Attributes. Association of Attributes.	
	Hypothesis Type I and Type II errors. Tests of significance. Student's t-test:	
	Single Mean - Difference of means - paired t-test Chi-Square test: Test of	
	Goodness of Fit - Independence Test	
IV	Introduction to Probability & Conditional Probability: Random experiment -	10
	Sample space - Events - Axiomatic Probability. Algebra of events. Conditional	
	Probability Multiplication theorem of Probability - Independent events - Bayes'	
	Theorem	
V	Random variables & Mathematical Expectation: Discrete random variable -	10
	Continuous random variable - Two-dimensional random variable .Joint	
	probability distribution. Expected value of a random variable. Expected value	

	of a function of a random variable Properties of Expectation and Variance -
	Covariance.
Reference	Text Books: S.C. Gupta, V.K. Kapoor and S. Chand, "Fundamentals of Mathematical Statistics", 11 th Revised Edition, 2002.
	Reference Books: S P Gupta, "Statistical Methods", Sultan Chand & Sons Publishing, 38 th Revised Edition, 2009.
Course	On completion of the course, students should be able to do
Outcomes	CO 1: A good understanding of elementary probability theory and its application. CO 2: A good understanding of the laws of probability and the use of Bayes theorem. CO 3: A good understanding of the concept of a statistical distribution. CO 4: A good understanding of the standard uni-variate distributions & their properties CO 5: A good understanding of the basic concepts of statistical inference.

CO/PO		PO							PSC)	
	1	2	3	4	5	6	1	2	3	4	5
CO1	3	2	2	1	3	2	3	2	2	3	0
CO2	2	1	3	2	1	3	1	2	3	1	2
CO3	3	2	1	3	2	1	3	1	1	2	2
CO4	1	3	2	2	1	2	2	3	2	0	3
CO5	2	3	2	1	0	3	3	2	1	2	1

Class	Course	Course		Sem	Hrs /	Credits
		code	Artificial Intelligence &		week	
M.Sc	CC-VII	19PDS207	O	II	6	5
(Data Science)		191 03207	Machine Learning		U	

Cognitive Level	K – 1 Remember K – 2 Understand K – 3 Apply
	The Course aims to
Course Ohioatinas	 To gain the basic knowledge about AI techniques and knowledge representation
Course Objectives	 To understand the basics of machine learning
	 To describe Neural Networks and Genetic Algorithms
	To illustrate Bayesian and Computational learning

UNIT	Content	No. of Hours
I	Artificial Intelligence: Al problem – Al technique – level of the model.	12
	Defining the problem – production systems production system	
	characteristics – Heuristic search techniques.	
II	Knowledge Representation: Representations and Mappings–issues in knowledge representation– predicate logic – representing knowledge using rules symbolic reasoning under uncertainty.	12
III	Neural Networks And Genetic Algorithms: Neural Network Representation – Problems – Perceptron's. Multilayer Networks and Back Propagation Algorithms – Advanced Topics Genetic Algorithms – Hypothesis Space Search – Genetic Programming – Models of Evolution and Learning.	10
IV	Bayesian And Computational Learning: Bayes Theorem — Concept Learning — Maximum Likelihood-Minimum Description Length Principle — Bayes Optimal Classifier — Gibbs Algorithm-Naïve Bayes Classifier — Bayesian Belief Network —EM Algorithm Probability Learning — Sample Complexity — Finite and Infinite Hypothesis Spaces — Mistake Bound Model.	12
V	Advanced Learning: Analytical Learning — Perfect Domain Explanation Base Learning — Reinforcement Learning Task—Q-Learning — Temporal Difference Learning	14
Reference	Text Books: Tom M. Mitchell, "Machine Learning", McGraw Hill Education Private Limit Edition, (1 May 2013) Reference Books: 1. Ethem Alpaydin, "Introduction to Machine Learning (Adaptive Cor	

	and Machine Learning)", The MIT Press 2004
	2. T. Hastie, R. Tibshirani, J. H. Friedman, "The Elements of Statistical Learning",
	Springer; 1 edition, 2001.
Course	On completion of the course, students should be able to do
Outcomes	CO 1: Identify learning problems, various concept learning methods
	CO 2: Identify the representation of neural networks
	CO 3: Enable to apply various machine learning techniques
	CO 4: Identify various advanced learning methods

CO/PO		PO							PSC)	
	1	2	3	4	5	6	1	2	3	4	5
CO1	3	2	1	1	3	2	2	3	1	2	1
CO2	2	3	1	2	2	1	2	1	2	3	0
CO3	1	2	3	1	2	2	3	2	0	1	1
CO4	3	3	2	1	1	3	1	2	3	2	0

Strongly Correlating(S) - 3 marks
Moderately Correlating (M) - 2 marks
Weakly Correlating (W) - 1 mark
No Correlation (N) - 0 mark

Class	Course	Course		Sem	Hrs /	Credits
		code	Machine Learning Lab		week	
M.Sc (Data Science)	CC-VIII	19PDS208L	Machine Learning Lab	II	6	4

Cognitive Level	K - 1 Remember K - 2 Understand K - 3 Apply
Course Objectives	 This Course aims to Preparing and pre-processing data using python or R To Visualize the results of analytics

Experiment	Content	No. of Hours
1	Implement applications using functions, loops, arrays, sorting. Applications using dictionaries, lists and tuples.	18
	Twitter API Integration for tweet Analysis Pre-processing and Preparing data.	
2	Exploratory data analytics / Statistical and Machine learning methods a. Descriptive Statistics b. Hypothesis testing c. Linear Regression d. Logistic Regression	12
3	Data Visualization, ggplot2	10
4	Case Study Sample Data sets may include any one from the following Automotive data, Social media data, Stock market data(Sports data, etc.	20
Course Outcomes	On completion of the course, students should be able to do CO 1: Familiar with the algorithms of machine learning methods CO 2: Gain Knowledge with techniques used for Knowledge Discovery in CO 3: Analysis machine learning techniques in real world domain	Databases

CO/PO	PO							PSO			
	1	2	3	4	5	6	1	2	3	4	5
CO1	3	2	1	2	1	3	2	1	2	2	1
CO2	2	1	2	3	2	3	1	3	2	0	2
CO3	1	3	3	1	3	2	3	2	0	1	3

Class	Course	Course code	Multivariate Techniques	Sem	Hrs / week	Credits
M.Sc (Data Science)	CC-IX	19PDS309	Wintivariate reciniques	III	6	5

Cognitive Level	K – 1 Remember K – 2 Understand K – 3 Apply
Course Objectives	 This Course aims To introduce multivariate analysis To design & access factor analysis. To understand clustering methods. Understanding the usage of multivariate techniques for the problem under
	 the consideration To design valid inferences and to plan for future investigations

UNIT	Content	No. of Hours
I	Meaning of Multivariate Analysis: Measurements Scales - Metric	13
	measurement scales and Non-metric measurement scales, Classification of	
	multivariate techniques (Dependence Techniques and Inter-dependence	
	Techniques), Applications of Multivariate Techniques in different disciplines	
II	Factor Analysis: Meanings-Objectives and Assumptions-Designing a factor	12
	analysis-Deriving factors and assessing overall factors- Interpreting the	
	factors and validation of factor analysis.	
III	Cluster Analysis: Objectives and Assumptions-Research design in cluster	15
	analysis- Deriving clusters and assessing overall fit (Hierarchical methods,	
	Non Hierarchical Methods and Combinations), Interpretation of clusters	
	and validation of profiling of the clusters.	
IV	Discriminant Analysis: concept-objective and applications-Procedure for	11
	conducting discriminant analysis. Stepwise discriminate analysis and	
	Mahalanobis procedure, Logic model.	
V	Linear Programming Problem - Formulation, graphical method-simplex	9
	method. Integer Programming. Transportation and Assignment problems.	
Reference	 Text Books: Joseph F Hair, William C Black, "Multivariate Data Analysis", Pearson Ed 7th edition, 2013. T. W. Anderson, "An Introduction to Multivariate Statistical Analysis, 3rd Wiley, 2003. William r Dillon, John Wiley & sons, "Multivariate Analysis meth applications", Wiley, 1984. Naresh K Malhotra, Satyabhusan Dash, "Marketing Research A Orientation", Pearson, 2011. 	Edition", ods and

	5. Hamdy A Taha, "Operations Research", Pearson, 2012.
	6.S R Yaday, A K Malik, "Operations Research", Oxford, 2014.
Course	On completion of the course, students should be able to do
Outcomes	CO1: will appreciate the range of multivariate techniques available,
	CO 2: will be able to summarize and interpret multivariate data.
	CO 3: will have an understanding of the link between multivariate techniques
	and corresponding univariate techniques,

CO/PO	PO							PSO			
	1	2	3	4	5	6	1	2	3	4	5
CO1	3	1	2	2	3	2	1	2	2	3	1
CO2	2	2	1	3	2	1	2	3	1	2	0
CO3	2	1	3	2	1	2	3	1	2	1	1

Class	Course	Course		Sem	Hrs/	Credits
		code	Big Data Analytics		week	
M.Sc (Data Science)	CC-X	19PDS310	Dig Data Analytics	III	6	5

Cognitive Level	K – 1 Remember K – 2 Understand K – 3 Apply
	The Course aims to
	To illustrate the evolution and basics of Big data
Course	To demonstrate mining of Data
Objectives	To analyze Hadoop, map reduce and its environment
	To justify features and working of map reduce
	 To build Hadoop cluster and extend the framework of Big Data Analytics.

UNIT	Content	No. of Hours						
I	The Fundamentals of Big Data: The Evolution of Data Management-Understanding							
	the Waves of Managing Data-Defining Big Data-Big Data Management							
	Architecture-Traditional and advanced analytics. Big Data Types: Defining							
	Structured Data-Defining Unstructured Data. Technology Foundations of Big data:							
	Big data Stack (technology Components) – Big data Analytics- Big data Applications.							
	Virtualization and Distributed Computing: Understanding the basics of							
	virtualization- importance of virtualization to Big Data.							
II	Mining Data Streams: Introduction To Streams Concepts – Stream Data Model and Architecture - Stream Computing - Sampling Data in a Stream – Filtering Streams – Counting Distinct Elements in a Stream – Estimating Moments – Counting Oneness in a Window – Decaying Window.	15						
III	HADOOP: History of Hadoop- Components of Hadoop –Map Reduce: Analyzing the Data with Hadoop- Scaling Out- Hadoop Streaming- The Hadoop Distributed. File System: Design of HDFS-HDFS Concepts-The command Line Interface- Java interfaces.	12						
IV	Map Reduce: Developing Map Reduce application: Setting up the development	10						
	environment- Writing a unit test with MRTUnit- Running Locally on Test Data. How							
	Map Reduce Works:Anatomy of a Map Reduce Job run-Shuffle and Sort – Map							
	Reduce Types and Formats- Map Reduce Features: Counters-Sorting-Joins.							
V	HADOOP Environment: Setting up a Hadoop Cluster - Cluster specification - Cluster	8						
	Setup and Installation - Hadoop Configuration-Security - Administering Hadoop:							
	HDFS-Monitoring-Maintenance.							

	FR.AMEWORKS: Pig: Installing and Running Pig- Data processing operators in Pig – Hive: Installing Hive- Hive services –Hive Client- HiveQL – Querying Data in Hive. Self Study: Basics of Pig & Hive
Reference	 Text Books: Judith Hurwitz, Alan Nugent, Dr.Fern Halper and Marcia Kaufman,"Big data for dummies", John Wiley & Sons, Inc 2013. AnandRajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012. Tom White "Hadoop: The Definitive Guide" Fourth Edition, O'reilly Media, 2012. Reference Books: Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007. Alan Gates, "Programming Pig", O'reilly Media, First Edition 2011 Jason Ruthberglen, Dean Wampler & Edward Capriolo, "Programming Hive", O'reilly Media, First Edition 2012.
Course Outcomes	On completion of the course, students should be able to do CO1:Analyze evolution and concepts of big data CO2:Predict mining data from data sets CO3:Outline Hadoop and Map reduce functions and its environment CO4:Explain different working principles of Map reduce CO5:Formulate Hadoop cluster and select appropriate tool

CO/PO		PO						PSO			
	1	2	3	4	5	6	1	2	3	4	5
CO1	2	3	2	1	3	0	3	1	2	3	1
CO2	1	2	3	2	1	3	1	2	3	1	3
CO3	3	2	1	1	2	2	2	3	2	3	2
CO4	2	1	3	2	3	1	3	1	1	2	2
CO5	1	3	2	3	1	2	1	2	2	3	0

Class	Course	Course		Sem	Hrs /	Credits
		code	Big Data Analytics Lab		week	
M.Sc (Data Science)	CC-XI	19PDS311L	Dig Data Analytics Lab	III	6	4

Cognitive Level	K – 1 Remember K – 2 Understand K – 3 Apply
	The Course aims to
Course Objectives	 To illustrate the evolution and basics of exploratory data analysis
	 To solve big data problems using Pig and Hive

UNIT	Content							
	Installation of Hadoop Ecosystem							
	a. Pig b. Hive							
	Pig Programming Language							
	1. Components of Pig, Pig Data Model							
	2. Pig vs SQL							
	3. Filtering and Transformation of Data							
	4. Grouping and Sorting, Combining and splitting							
	5. Processing Logs in pig							
	Hive							
	6. Hive Query Language							
	7. Hive Data Models							
	8. Hive Functions							
	9. Process tweets in Hive							
Course Outcomes	On completion of the course, students should be able to do CO1: Ability how to Install Hadoop Ecosystem							
Outcomes	• • • • • • • • • • • • • • • • • • • •							
	CO2: Compare strength and limitations of Pig and Hive							
	CO3:To grouping and sorting using Pig programming language CO4: Annal se evolution and concepts of big data							
	CO5: Predict mining data from data sets							

CO/PO	PO							PSO			
	1	1 2 3 4 5 6							3	4	5
CO1	3	2	3	2	1	3	1	2	3	2	1
CO2	1	1	2	3	3	1	1	3	2	3	2
CO3	2	3	1	2	2	2	1	2	1	3	2
CO4	1	2	3	1	2	3	3	1	2	0	1
CO5	3	1	2	1	1	2	2	3	3	1	0

Class	Course	Course code	Doon Loorning	Sem	Hrs / week	Credits
M.Sc (Data Science)	CC-XII	19PDS412	Deep Learning	IV	6	5

Cognitive Level	K – 1 Remember K – 2 Understand K – 3 Apply
Course Objectives	 The Course aims to To know about basic concepts of NLP and Machine Learning To obtain a thorough knowledge of various knowledge representation schemes To have an overview of various AI applications To study about various heuristic and game search algorithms To know about various Expert System tools and applications

UNIT	Content	No. of Hours
I	Introduction - Feed forward Neural networks. Gradient descent and the back propagation algorithm. Unit saturation, aka the vanishing gradient problem, and ways to mitigate it. RelU Heuristics for avoiding bad local minima. Heuristics for faster training. Nestors accelerated gradient descent. Regularization. Dropout.	12
II	Convolutional Neural Networks - Architectures, convolution / pooling layers - Recurrent Neural Networks (LSTM, GRU, Encoder Decoder architectures.	10
III	Deep Unsupervised Learning- Auto encoders (standard, sparse, denoising, contractive, etc.), Variational Auto encoders, Adversarial Generative Networks, Auto encoder and DBM	8
IV	Applications of Deep Learning to NLP: Introduction to NLP and Vector Space Model of Semantics-Word Vector Representations: Continuous Skip-Gram Model-Continuous Bag-of-Words model (CBOW)- Glove-, Evaluations and Applications in word similarity-analogy reasoning-Named Entity Recognition-Opinion Mining using Recurrent Neural Networks.	12
V	Parsing and Sentiment Analysis using Recursive Neural Networks - Sentence Classification using Convolutional Neural Networks	8
Reference	Text Books: Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning Press	g." An MIT
Course	On completion of the course, students should be able to do	

Outcomes	CO 1: Technical knowhow of AI applications, heuristics, Expert Systems, NLP, and
	Machine Learning techniques
	CO 2: Acquaintance with programming languages such as LISP and PROLOG.
	CO 3: Develop algorithms simulating human brain.
	CO 4: Implement Neural Networks in Tensor Flow for solving problems.
	CO 5: Explore the essentials of Deep Learning and Deep Network architectures.

CO/PO	PO							PSO				
	1	2	3	4	5	6	1	2	3	4	5	
CO1	3	2	1	2	3	0	3	2	0	2	3	
CO2	2	1	2	3	1	3	1	2	1	3	2	
CO3	1	3	2	1	2	2	3	1	0	2	3	
CO4	3	2	1	3	2	1	2	3	2	0	2	
CO5	2	1	1	2	3	2	1	2	3	2	1	

Class	Course	Course code	Predictive Analytics	Sem	Hrs / week	Credits
M.Sc (Data Science)	CC-XIII	19PDS413	Fredictive Analytics	IV	6	5

Cognitive Level	K - 1 Remember K - 2 Understand K - 3 Apply
Course Objectives	 This Course aims To focus on the most important aspect of predictive analytics To differentiate regression and supervised techniques
	 To differentiate regression and supervised techniques To focus on various clustering techniques To evaluate models
	 To interpret the results of the analysis to make decisions

UNIT	Content	No. of Hours
I	Introduction - Extract meaningful patters, building representative	15
	models, Combination of Statistics, Machine Learning, and Computing,	
	algorithms, what data mining is not - a THE CASE FOR DATA MINING -	
	types of data mining – data mining algorithm	
II	Data Exploration – Classification-classification and clustering, Model	15
	driven Forecasting, Anomaly detection concepts Predictive Analytics and	
	Data Mining Algorithms Decision trees, rule induction, Naïve Bayesian,	
	artificial neural networks, SVM, Ensemble Learners	
III	Regression and Association Analysis- Linear regression, Logistic	12
	regression, supervised data Mining a predictive analytics techniques with	
	target	
IV	Types of clustering and model evaluation-Unsupervised data Mining a	10
	predictive analytics techniques without target	
V	Special Applications-Implementing Text Mining with	8
Reference	Text Books:	
	Vijay Kotu Bala Deshpande, "Predictive Analytics and Data Mining Conc	epts and
	Practice with RapidMiner"Elsevier Publishe".	
Course	On completion of the course, students should be able to do	
Outcomes	CO 1: Be able to apply the knowledge of computing tools and technique	
	field of Big Data for solving real world problems encountered in the	Software
	Industries.	1:41. D.1.
	CO 2: Be able to analyze the various technologies & tools associated	with Big
	Data CO 2. Po phla to identify the shellenges in Pig Data with respect to IT I	ndust er :
	CO 3: Be able to identify the challenges in Big Data with respect to IT In and pursue quality research in this field with social relevance.	ildustry
	and pursue quanty research in this field with social relevance.	

CO/PO		PO					PSO				
	1	2	3	4	5	6	1	2	3	4	5
CO1	3	2	3	1	2	3	3	2	3	1	3
CO2	2	1	1	2	3	2	1	1	2	3	0
CO3	1	3	2	2	2	1	2	0	1	2	2

Class	Course	Course code	Duadiative Amelytics I al	Sem	Hrs / week	Credits
M.Sc (Data Science)	CC-XIV	19PDS414L	Predictive Analytics Lab	IV	6	4

Cognitive Level	K – 1 Remember K – 2 Understand K – 3 Apply
	This Course aims
Course Objectives	 To focus on the implementation predictive analytics:
	 To interpret the results of the analysis to make decisions

UNIT	Content
	1. Data Exploration
	2. Classification
	3. Regression and Association Analysis
	4. Types of clustering and model evaluation
Course	On completion of the course, students should be able to do
Outcomes	CO 1: Be able to identify the challenges in Big Data with respect to IT
	Industry and pursue quality research in this field with social relevance.
	CO 2: Predict mining data from data sets

CO/PO		PO					PSO				
	1	2	3	4	5	6	1	2	3	4	5
CO1	3	2	2	1	1	2	2	1	3	0	2
CO2	2	2	1	2	3	2	1	2	0	1	3

Class	Course	Course code	Duth on Duogramming	Sem	Hrs / week	Credits
M.Sc (Data Science)	CEC-I	19PDS215(a)	Python Programming	II	6	4

Cognitive Level	K – 1 Remember K – 2 Understand K – 3 Apply			
Course Objectives	 This Course aims to To prepare and pre-process data using python To visualize the results of data analytics. 			

UNIT	Content	No. of Hours
I	Algorithmic Problem Solving: Algorithms-building blocks of algorithms (statements, state, control flow, functions) notation (pseudo code, flow chart, programming language)-algorithmic problem solving-simple strategies for developing algorithms (iteration, recursion) Illustrative problems: find minimum in a list-insert a card in a list of sorted cards-guess an integer number in a range. Towers of Hanoi.	15
II	Data, Expressions, Statements: Python interpreter and interactive mode. Values and types: int-float,-Boolean-string-and list variables, expressions-statements-tuple. Assignment-precedence of operators comments-modules and functions-function definition and use, flow of execution Parameters and arguments; Illustrative programs: exchange the values of two variables-circulate the values of n variables,-distance between two points.	15
III	Control Flow, Functions: Conditionals: Boolean values and operators-conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.	11
IV	Lists, Tuples, Dictionaries: Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods;	9

	advanced list processing – list comprehension; Illustrative programs:
	selection sort, insertion sort, merge sort, histogram.
V	Files, Modules, Packages: Files and exception: text files, reading and 10
v	Files, Modules, Packages: Files and exception: text files, reading and writing files, fformat operator; command line arguments, errors and
	exceptions, handling exceptions, modules, packages; Illustrative programs:
	word count, copy file.
References	1. Tony Gaddis, "Starting out with python", 2 nd edition, Addison Wesley,
	Pearson
	2. Michael Dawson, "Python programming for the absolute beginner", Premier
	press, 2003
	3. Ivan Idris, "NumPy Beginner's Guide", Third Edition, Packet Publishing, 2015
	4. Guido van Rossum, "Python Tutorial – Release 2.3.3" 2003, Python Software
	Foundation Ltd.
	5. Jennifer Campbill, Paul Gries, Jason Montojo and Greg Wilson, "Practical
	programing, An Introduction to computer science using Python",2011
Course	On completion of the course, students should be able to do
Outcomes	CO 1: To develop proficiency in creating based applications using the
	Python Programming Language.
	CO 2: To be able to understand the various data structures available in
	Python programming language and apply them in solving computational
	problems.
	CO 3: To be able to do testing and debugging of code written in Python.
	CO 4: To be able to draw various kinds of plots using PyLab.
	CO 5: To be able to do text filtering with regular expressions in Python.

CO/PO	PO							PSO			
	1	2	3	4	5	6	1	2	3	4	5
CO1	3	2	2	1	1	2	2	1	3	0	2
CO2	2	2	1	2	3	2	1	2	0	1	3
CO3	1	3	3	3	2	3	3	3	2	3	0
CO4	1	1	2	1	1	3	1	1	3	0	2
CO5	2	2	1	2	3	2	2	2	2	3	0

Class	Course	Course code	R Programming	Sem	Hrs / week	Credits
M.Sc (Data Science)	CEC-I	19PDS215(b)	Kirogramming	II	6	4

Cognitive Level	K - 1 Remember K - 2 Understand K - 3 Apply
	This Course aims
Course Objectives	To Prepare and pre-process data using R
	To visualize the results of analytics.

UNIT	Content	No. of Hours
I	R basics: Math-Variables- and Strings-Vectors and Factors-Vector operations.	12
II	Data structures in R: Arrays & Matrices-Lists-Dataframes.	14
III	R programming fundamentals: Conditions and loops- Functions in R-Objects and Classes-Debugging	12
IV	Working with data in R: Reading CSV and Excel Files- Reading text files-Writing and saving data objects to file in R	10
V	Strings and Dates in R: String operations in R-Regular Expressions-Dates in R	12
Reference	 Reference Books: Mark Gardener, "Beginning R The statistical programming I John Wiley & Sons Inc, 2012, ISBN:978-1-118-16430-3 Norman Matloff, "The art of R programming", William Pollo ISBN-10: 1-59327-384-3 Roger D. Peng, "R Programming for Data Science", Leanpub, 20 	ock , 2011,
Course Outcomes	On completion of the course, students should be able to do CO 1: Familiar with the algorithms of machine learning methods. CO 2: Gain Knowledge with techniques used for Knowledge D Databases. CO 3: Analysis machine learning techniques in real world domain.	iscovery in

CO/PO	PO								PSC)	
	1	2	3	4	5	6	1	2	3	4	5
CO1	3	2	1	2	1	3	2	1	3	2	1
CO2	1	3	2	3	1	2	1	3	2	2	0
CO3	2	1	1	2	2	1	1	2	2	0	2

Class	Course	Course code		Sem	Hrs/	Credits
			Health Care Data		week	
M.Sc (Data Science)	OEC-I	19PDS216(a)	Analytics	II	6	4

Cognitive Level	K - 1 Remember K - 2 Understand K - 3 Apply
	This Course aims
Course Ohioetimes	To explore the various forms of electronic health care information.
Course Objectives	To learn the techniques adopted to analyze health care data.
	To understand the predictive models for clinical data

UNIT	Content	No. of Hours				
I	Introduction: Introduction to Healthcare Data Analytics- Electronic Health	15				
	Record. Components of EHR- Coding Systems. Benefits of EHR- Barrier to					
	Adopting HER Challenges- Phenotyping Algorithms.					
II	Analysis: Biomedical Image Analysis- Mining of Sensor Data in Healthcare.	12				
	Biomedical Signal Analysis- Genomic Data Analysis for Personalized					
	Medicine.					
III	Analytics: Natural Language Processing and Data Mining for Clinical	8				
	Text.Mining the Biomedical- Social Media Analytics for Healthcare.					
IV	Advanced Data Analytics: Advanced Data Analytics for Healthcare— Review	15				
	of Clinical Prediction Models. Temporal Data Mining for Healthcare Data-					
	Visual Analytics for Healthcare(.Predictive Models for Integrating Clinical					
	and Genomic Data- Information Retrieval for Healthcare- Privacy-					
	Preserving Data Publishing Methods in Health care.					
V	Applications: Applications and Practical Systems for Healthcare- Data	10				
	Analytics for Pervasive Health. Fraud Detection in Healthcare- Data					
	Analytics for Pharmaceutical Discoveries- Clinical Decision Support					
	Systems.Computer-Assisted Medical Image Analysis Systems- Mobile					
	Imaging and Analytics for Biomedical Data.					
Reference	Text Books:					
	Chandan K. Reddy and Charu C Aggarwal, "Healthcare data analytics	", Taylor				
	&Francis, 2015 Reference Books:					
	Hui Yang and Eva K. Lee, "Healthcare Analytics: From Data to Know	ledge to				
	Healthcare Improvement, Wiley, 2016					
Course	On completion of the course, students should be able to do					
Outcomes	CO 1: Analyse health care data using appropriate analytical techniques.					
	CO 2: Apply analytics for decision making in healthcare services.					
	CO 3: Apply data mining to integrate health data from multiple sou	irces and				
	develop efficient clinical decision support systems.					

CO/PO	PO								PSO		
	1	1 2 3 4 5 6						2	3	4	5
CO1	3	2	2	1	1	3	2	1	2	3	0
CO2	2	3	3	1	2	3	2	1	0	2	2
CO3	1	1	1	3	1	2	3	1	2	0	1

Class	Course	Course code	Social Media Mining –	Sem	Hrs / week	Credits
M.Sc (Data Science)	OEC-I	19PDS216(b)	Social Media Milling	II	6	4

Cognitive Level	K – 1 Remember K – 2 Understand K – 3 Apply
Course Objectives	 This Course aims To understand the components of the social network. To model and visualize the social network. To mine the users in the social network. To understand the evolution of the social network. To mine the interest of the user.

UNIT	Content	No. of Hours
I	Introduction- Introduction to Web - Limitations of current Web – Development of	15
	Semantic Web – Emergence of the Social Web. Statistical Properties of Social	
	Networks -Network analysis - Development of Social Network Analysis - Key	
	concepts and measures in network analysis. Discussion networks - Blogs and online communities - Web-based networks.	
II	Modeling And Visualization- Visualizing Online Social Networks - A Taxonomy of	15
	Visualizations - Graph Representation.Centrality- Clustering - Node-Edge	
	Diagrams -Visualizing Social Networks with Matrix-Based Representations- Node-	
	Link Diagrams -Hybrid Representations. Modelling and aggregating social network	
	data – Random Walks and their Applications –Use of Hadoop and Map Reduce	
	.Ontological representation of social individuals and relationships.	
III	Mining Communities- Aggregating and reasoning with social network data-	8
	Advanced Representations Extracting evolution of Web Community from a Series	
	of Web Archive Detecting Communities in Social Networks - Evaluating	
	Communities – Core Methods for Community Detection & Mining - Applications	
	of Community Mining Algorithms - Node Classification in Social Networks.	
IV	Text and Opinion Mining- Text Mining in Social Networks -Opinion extraction -	12
	Sentiment classification and clustering Temporal sentiment analysis - Irony	
	detection in opinion mining - Wish analysis - Product review mining .Review	
	Classification –Tracking sentiments towards topics over time.	
V	Tools for Social Network Analysis- UCINET – PAJEK – ETDRAW – StOCNET .splus –	10
	R – NodeXL – SIENA and RSIENA – Real world Social Networks (Facebook- Twitter	
	etc.)	

Reference	Text Books:								
	1. Charu C. Aggarwal, "Social Network Data Analytics", Springer; 2011.								
	2. Peter Mika, "Social Networks and the Semantic Web", Springer ,1st edition, 2007. Reference Books:								
	BorkoFurht, "Handbook of Social Network Technologies and Applications", , Springer 1 st edition, 2010.								
	2. GuandongXu, Yanchun Zhang and Lin Li, "Web Mining and Social Networking –								
	Techniques and applications", , Springer 1st edition, 2011.								
Course	On completion of the course, students should be able to do								
Outcome s	CO1: Work on the internal components of the social network.								
	CO 2: Model and visualize the social network.								
	CO 3: Mine the behavior of the users in the social network.								
	CO 4: Predict the possible next outcome of the social network.								
	CO 5: Mine the opinion of the user.								

CO/PO		PO							PSO				
	1	2	3	4	5	6	1	2	3	4	5		
CO1	3	1	2	2	1	2	3	3	1	2	0		
CO2	2	2	2	1	3	0	1	1	1	2	1		
CO3	3	1	3	3	1	2	1	3	2	0	2		
CO4	1	3	3	2	2	3	2	2	3	1	0		
CO5	2	2	1	1	0	1	3	2	0	1	3		

Class	Course	Course code		Sem	Hrs/	Credits
			Natural Language Processing		week	
M.Sc (Data Science)	CEC-II	19PDS317(a)	Tratural Language 1 rocessing	III	6	4

Cognitive Level	K – 1 Remember K – 2 Understand K – 3 Apply
	The Course aims to
	 Learn the techniques in natural language processing.
Course Objectives	 Be familiar with the natural language generation.
	 Be exposed to machine translation.
	 Understand the information retrieval techniques.

UNIT	Content	No. of Hours
I	Overview and Language Modeling: Overview: Origins and challenges of NLP- Language and Grammar.Processing Indian Languages NLP Applications- Information Retrieval. Language Modeling: Various Grammar- based Language Models-Statistical Language Model	12
II	Word Level And Syntactic Analysis: Word Level Analysis: Regular Expressions-Finite-State Automata-Morphological Parsing. Spelling Error Detection and correction-Words and Word classes-Part-of Speech Tagging. Syntactic Analysis: Context-free Grammar-Constituency- Parsing-Probabilistic Parsing.	15
III	Semantic Analysis and Discourse Processing: Semantic Analysis: Meaning Representation-Lexical Semantics- Ambiguity-Word Sense Disambiguation. Discourse Processing: cohesion-Reference Resolution- Discourse Coherence and Structure.	8
IV	Natural Language Generation and Machine Translation: Natural Language Generation: Architecture of NLG Systems- Generation Tasks and Representations Application of NLG.Machine Translation: Problems in Machine Translation-Characteristics of Indian Languages- Machine Translation Approaches-Translation involving Indian Languages.	10
V	Information Retrieval And Lexical Resources: Information Retrieval: Design features of Information Retrieval Systems-Classical, Non-classical, Alternative Models of Information Retrieval – valuation. Lexical Resources: World Net-Frame NetStemmers-POS Tagger- Research Corpora	15
Reference	Text Books:	

	 Tanveer Siddiqui, U.S. Tiwary, "Natural Language Processing and Information Retrieval", Oxford University Press, 2008. Reference Books: Daniel Jurafsky and James H Martin, "Speech and Language Processing: An introduction to Natural Language Processing, Computational Linguistics and Speech Recognition", 2 nd Edition, Prentice Hall, 2008. James Allen, "Natural Language Understanding", 2nd edition, Benjamin /Cummings publishing company, 1995.
Course	On completion of the course, students should be able to do
Outcomes	CO 1: Upon completion of the course, the student should be able to:
	CO 2: Analyze the natural language text.
	CO 3: Generate the natural language.
	CO 4: Do machine translation.
	CO 5: Apply information retrieval technique.

-:;												
CO/PO	PO						PSO					
	1	2	3	4	5	6	1	2	3	4	5	
CO1	2	3	3	1	3	2	3	2	1	2	2	
CO2	1	3	2	2	2	3	3	3	3	3	0	
CO3	3	2	1	3	3	1	2	1	2	1	2	
CO4	1	1	3	1	3	2	3	2	1	0	3	
CO5	2	2	1	2	2	1	2	3	0	2	1	

Class	Course	Course code		Sem	Hrs / week	Credits
M.Sc (Data Science)	CEC-II	19PDS317(b)	Financial Risk Analytics	III	6	4

Cognitive Level	K – 1 Remember K – 2 Understand K – 3 Apply
Course Objectives	 This Course aims To identify the different risks involved in Finance arena. To understand and solve the different risks pertaining to stock market and its instruments. To analyze the legal issues affecting the business

*******		BT - C
UNIT	Content	No. of Hours
I	Introduction to Risk -Understanding Risk- Nature of Risk, Source of Risk, Need	15
	for risk management. Benefits of Risk Management, Risk Management	
	approaches. Risk Classification.credit risk, market risk, operational risk and other risk.	
II	Risk Measurements -Measurement of Risk – credit risk measurement, market	8
	risk measurement.interest rate risk measurement, Asset liability management, measurement of operational risk.	
III	Risk Management- Risk management- Managing credit risk, managing operational risk, managing market risk, insurance.	11
IV	Risk in Instruments -Tools for risk management Derivatives, combinations of	12
	derivative instruments, Neutral and volatile strategies- credit derivatives, credit ratings, swaps.	
V	Regulation and Other Issues: Other issues in risk management – Regulatory framework-	14
	Basel committee, legal issues, accounting issues	
	tax issues, MIS and reporting, integrated risk management.	
Reference	Text Books:	
	Dun, Bradstreet, "Financial Risk Management", TMH, 2006. Reference Books:	
	1. John C Hull, "Risk management and Financial Institutions", Pearson, 2015 2. Aswath Damodharan, "Strategic Risk Taking", Pearson, 2008	i.

Course Outcomes

On completion of the course, students should be able to do

- CO 1: Identify and categorize the various risks faced by an organization.
- CO 2: Explore the tools and practices needed to assess and evaluate financial risks.
- CO 3: Explore risk management practices in an industry.
- CO 4: Identify and solve legal issues that impact financial and other risk affecting business

Mapping of Cos with PSOs & Pos:

CO/PO	PO								PSC)	
	1	2	3	4	5	6	1	2	3	4	5
CO1	3	2	1	2	3	1	3	2	1	2	2
CO2	2	3	2	1	2	3	3	2	1	3	0
CO3	1	2	3	1	1	2	1	1	2	2	1
CO4	2	1	3	2	3	1	1	3	0	1	3

Class	Course	Course code	Cloud and Web Intelligence	Sem	Hrs / week	Credits
M.Sc (Data Science)	CEC-III	19PDS318(a)	l G	III	6	4

Cognitive Level	K – 1 Remember K – 2 Understand K – 3 Apply
Course Objectives	 The Course aims to To provide an in-depth and comprehensive knowledge of the Cloud Computing To understand the fundamental issues, technologies, applications and implementations of cloud computing. To expose the students to the frontier areas of Cloud Computing To know the importance of qualitative data, get insights and techniques.
	To develop customer-centric approach in dealing with data.

UNIT	Content	No. of Hours
I	History of Centralized and Distributed Computing - Overview of Distributed Computing, Cluster computing, Grid computing. Technologies for Network based systems- System models for Distributed and cloud computing-Software environments for distributed systems and clouds.	8
II	Introduction to Cloud Computing- Cloud issues and challenges - Properties - Characteristics Service models, Deployment models. Cloud resources: Network and API - Virtual and Physical computational resources - Datastorage. Virtualization concepts. Types of Virtualization- Introduction to Various Hypervisors - High Availability (HA)/Disaster Recovery (DR) using Virtualization, Moving VMs	12
III	Service models - Infrastructure as a Service (IaaS) (2hour) Resource Virtualization: Server, Storage, Network - Case studies. Platform as a Service (PaaS). Cloud platform & Management: Computation, Storage - Case studies. Software as a Service (SaaS) - Web services - Web 2.0 - Web OS - Case studies – Anything as a service (XaaS).	15
IV	Web Analytics – Basics – Traditional Ways – Expectations – Data Collection .Clickstream Data – Weblogs – Beacons – JavaScript Tags – Packet Sniffing Outcomes data – Competitive data – Search Engine Data.	11
V	Qualitative Analysis – Customer Centricity – Site Visits – Surveys – Questionnaires Website Surveys – Post visits – Creating and Running-Benefits of surveys – Critical components of successful strategy	14
Reference	Text Books:	

	Kai Hwang, Geoffrey C. Fox and Jack J. Dongarra, "Distributed and cloud computing from Parallel Processing to the Internet of Things", Morgan Kaufmann, Elsevier – 2012
	Reference Books:
	1. Barrie Sosinsky, "Cloud Computing Bible" John Wiley & Sons, 2010
	2. Tim Mather, Subra Kumaraswamy, and Shahed Latif, Cloud Security and Privacy An
	Enterprise Perspective on Risks and Compliance, O'Reilly 2009
Course	On completion of the course, students should be able to do
Outcomes	CO 1: Articulate the main concepts, key technologies, strengths, and limitations of cloud
	computing and the possible applications for state-of-the-art cloud computing
	CO 2: Identify the architecture and infrastructure of cloud computing, including SaaS,
	PaaS, IaaS, public cloud, private cloud, hybrid cloud, etc.
	CO 3: Explain the core issues of cloud computing such as security, privacy, and
	interoperability.
	CO 4: Know the concepts and terminologies related to web analytics.
	CO 5: Explore various parameters used for web analytics and their impact.

CO/PO		PO						PSO			
	1	2	3	4	5	6	1	2	3	4	5
CO1	2	3	1	2	2	2	1	3	2	0	2
CO2	1	2	2	3	1	3	3	3	2	1	2
CO3	3	3	1	2	1	3	2	2	0	2	1
CO4	2	2	3	1	2	3	1	3	2	1	0
CO5	3	1	2	2	1	1	2	1	3	0	2

Class	Course	Course code		Sem	Hrs /	Credits
			Customer Relationship		week	
M.Sc	CEC-III	19PDS318(b)	-	III	6	4
(Data Science)		13100010(0)	Management		U	

Cognitive Level	K – 1 Remember K – 2 Understand K – 3 Apply
Course Objectives	 This Course aims To train the participants in the concepts of customer relationship management With industry case studies and strategies for implementing them in any organization. To better understand customer needs and to maintain long-term customer relationships. Be able to pursue a strategy of Relationship Marketing.

UNIT	Content	No. Of Hours
I	Introduction to Customer Relationship Management: - Benefits of CRM to Customers and Organizations- Customer Profitability Segments Components of CRM: Information- Process- Technology and People-Barriers to CRM. Relationship Marketing and CRM: Relationship Development Strategies:	10
II	Customer Service and Data Management: CRM Marketing Initiatives: Cross-Selling and Up-Selling- Customer Retention- Behavior Prediction-Customer Profitability and Value Modeling. Channel Optimization- Personalization and Event-Based Marketing. CRM and Data Management: Types of Data: Reference Data-Transactional Data- Warehouse Data and Business View Data- Identifying Data Quality Issues- Planning and Getting Information Quality- Using Tools to Manage Data- Types of Data Analysis: Online Analytical Processing (OLAP) - Clickstream Analysis- Personalization and Collaborative Filtering- Data Reporting.	15
III	CRM Strategy- Planning: Understanding Customers: Customer Value- Customer Care Company Profit Chain: Satisfaction- Loyalty- Retention and Profits. Objectives of CRM Strategy The CRM Strategy Cycle: Acquisition- Retention and Win Back- Complexities of CRM Strategy.	15
IV	CRM Implementation and Evaluation: Planning and Implementation of CRM: Business to Business CRM- Sales and CRM- Sales Force Automation.Sales Process/ Activity Management- Sales Territory Management- Contact Management- Lead Management- Configuration Support.Knowledge Management CRM Implementation: Steps- Business Planning- Architecture and Design- Technology	10

	Selection- Development- Delivery and Measurement.	
V	CRM New Horizons: e-CRM: Concept- Different Levels of E- CRM- Privacy in E-CRM	10
	.Software App for Customer Service: Activity Management- Agent Management-	
	Case Assignment	
Reference	 Text Books: Anderrson Kristin and Carol Kerr,"Customer Relationship Managem McGraw-Hill, 2002. Ed Peelen, "Customer Relationship Management", Prentice Hall, 2005. Reference Books: Bhasin Jaspreet Kaur, "Customer Relationship Management", Dreamtech Pred 2. Valarie A Zeithmal, Mary Jo Bitner, Dwayne D Gremler and Ajay Pandin Marketing Integrating 	ess,2012
Course	On completion of the course, students should be able to do	
Outcomes	CO 1: Explore the concepts of customer relationship management with in	dustry case
	studies.	
	CO 2: Develop metrics for customer retention.	
	CO 3: Apply data mining concepts to implement CRM in real world applications	
	CO 4: Devise strategies to implement CRM in any organization.	

CO/PO		PO							PSO		
	1	2	3	4	5	6	1	2	3	4	5
СО	2	2	3	1	2	3	2	1	2	1	3
CO2	3	1	2	2	3	1	3	2	1	0	2
CO3	1	3	2	3	1	2	1	2	3	2	1
CO4	2	1	3	1	2	3	2	3	2	3	

Class	Course	Course code	Business Intelligence	Sem	Hrs / week	Credits
M.Sc (Data Science)	CEC-IV	19PDS419(a)	Business intelligence	IV	6	4

Cognitive Level	K – 1 Remember K – 2 Understand K – 3 Apply
Course Objectives	 The Course aims to Be exposed with the basic rudiments of business intelligence system understand the modeling aspects behind Business Intelligence understand of the business intelligence life cycle and the techniques used in it Be exposed with different data analysis tools and techniques

UNIT	Content	No. of Hours
I	Business Intelligence: Effective and timely decisions – Data, information	15
	and knowledge – Role of mathematical models. Business intelligence	
	architectures: Cycle of a business intelligence analysis – Enabling factors	
	in business intelligence projects – Development of a business intelligence	
	system – Ethics and business intelligence.	
II	Knowledge Delivery: The business intelligence user types-Standard	8
	reports- Interactive Analysis and Ad Hoc Querying Parameterized Reports	
	and Self-Service Reporting-dimensional analysis-Alerts/Notifications.	
	Visualization: Charts-Graphs-Widgets- Scorecards and Dashboards	
	Geographic Visualization-Integrated Analytics- Considerations: Optimizing	
	the Presentation for the Right Message.	
III	Efficiency: Efficiency measures-The CCR model: Definition of target	15
	objectives- Peer groups – Identification of good operating practices- cross	
	efficiency analysis – virtual inputs and outputs – Other models. Pattern	
	matching.	
IV	Business Intelligence Applications: marketing models – Logistic and	10
	Production models Case studies.	
V	Future Of Business Intelligence: Future of business intelligence –	12
	Emerging Technologies, Machine Learning	
	BI Search – Advanced Visualization – Rich Report, Future beyond	
	Technology.	
Reference	Text Books:	
	Efraim Turban, Ramesh Sharda, Dursun Delen, "Decision Support a	nd
	Business Intelligence Systems", 9th Edition, Pearson 2013.	

	Reference Books: 1. Larissa T. Moss, S. Atre, "Business Intelligence Roadmap: The Complete Project Lifecycle of Decision Making", Addison Wesley, 2003. 2. Carlo Vercellis, "Business Intelligence: Data Mining and Optimization for
	Decision Making", Wiley Publications, 2009.
	Decision Making, Whey Publications, 2009.
Course	On completion of the course, students should be able to do
Outcomes	CO 1: Explain the fundamentals of business intelligence.
	CO 2: Link data mining with business intelligence.
	CO 3: Apply various modeling techniques.
	CO 4: Explain the data analysis and knowledge delivery stages.
	CO 5: Apply business intelligence methods to various situations.

CO/PO	PO							PSO				
	1	2	3	4	5	6	1	2	3	4	5	
CO1	2	1	3	2	1	1	3	2	0	1	1	
CO2	1	3	1	1	2	3	2	3	2	0	3	
CO3	3	2	2	3	3	2	1	2	3	2	1	
CO4	2	1	1	2	1	3	1	3	2	2	0	
CO5	1	2	3	1	2	1	2	2	1	3	2	

Class	Course	Course code		Sem	Hrs/	Credits
			Image and Video		week	
M.Sc	CEC-IV	19PDS419(b)	0	IV	6	4
(Data Science)		191 03419(0)	Analytics		U	

Cognitive Level	K - 1 Remember K - 2 Understand K - 3 Apply
Course Objectives	 The Course aims to To teach the fundamentals of digital image processing, image and video analysis. To understand the real time use of image and video analytics. To demonstrate real time image and video analytics applications and others.

UNIT	Content	No. of Hours
I	Digital image representation- Visual Perception- Sampling and Quantization Basic Relations between Pixels.Mathematical Tools Used in Digital Image Processing: Fundamental Operations –Vector and Matric Operations- Image Transforms (DFT, DCT, DWT, Hadamard).	15
II	Fundamentals of spatial filtering: spatial correlation and convolution-smoothing blurring-sharpening.edge detection - Basics of filtering in the frequency domain: smoothing-blurring- sharpening. Histograms and basic statistical models of image.	10
III	Colour models and Transformations – Image and Video segmentation- Image and video demonizing.Image and Video enhancement- Image and Video compression.	10
IV	Object detection and recognition in image and video. Texture models Image and Video classification models- Object tracking in Video.	10
V	Applications and Case studies- Industrial.Retail- Transportation & Travel-Remote sensing. Video Analytics in WSN: IoT Video Analytics Architectures.	15
Reference	Text Books: 1. R.C. Gonzalez and R.E. Woods." Digital Image Processing". Wesley, 3rd Edition, 2007. 2. W. Härdle, M. Müller, S. Sperlich, A. Werwatz, "Nonparametric a parametric Models", Springer, 2004. Reference Books: 1. Rick Szelisk, "Computer Vision: Algorithms and Applications", 2011.	and Semi

	2. Jean-Yves Dufour, "Intelligent Video Surveillance Systems", Wiley, 2013.
Course	On completion of the course, students should be able to do
Outcomes	CO 1: Describe the fundamental principles of image and video analysis and have
	an idea of their application.
	**
	CO 2: Apply image and video analysis in real world problems.

CO/PO	PO							PSO				
	1	2	3	4	5	6	1	2	3	4	5	
CO1	3	2	1	3	2	3	1	0	2	3	1	
CO2	2	3	3	3	2	3	1	1	2	1	3	